

Communications in Nonlinear Analysis

Journal Homepage: www.cna-journal.com

Location of Zeros of Polynomials

P. Ramulu^{a,*}, G.L.Reddy^b

^aDepartment of Mathematics, M.V.S Govt. Arts and Science College(Autonomous), Mahabubnagar, Telangana, India-509001.

^bSchool of Mathematics and Statistics, University of Hyderabad, India-500046.

Abstract

In this paper we consider the problem of finding the estimation of maximum number of zeros in a prescribed region and the results which we obtain generalize and improve upon some well known results.

Keywords: Zeros of polynomial, Eneström- Kakeya theorem, Prescribed region.

2010 MSC: 30C10, 30C15

1. Introduction

According to the Eneström- Kakeya [2,5]: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n such that $0 < a_0 \le a_1 \le ... \le a_{n-1} \le a_n$ then all the zeros of P(z) lie in $|z| \le 1$ and concerning the number of zeros of the polynomial in the region $|z| \le \frac{1}{2}$, the following result is due to Mohammad [6].

Theorem 1.1. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n such that $0 < a_0 \le a_1 \le ... \le a_{n-1} \le a_n$. Then the number of zeros of P(z) in $|z| \le \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{a_n}{a_0}.$$

In this paper we want to prove the following results. In fact the following results generalize some of the results in [3,7-12].

2. Main results

Theorem 2.1. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that

$$|arg(a_i) - \beta| \le \alpha \le \frac{\pi}{2}, \ i = 0, 1, 2, ..., n, \ for \ some \ real \ \beta, \ a_0 \ne 0 \ and$$

Email addresses: ramulu.purra@gmail.com (P. Ramulu 1), glrsm@uohyd.ernet.in (G.L.Reddy)

^{*}Corresponding author

 $|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge |a_{n-3}| \le \dots \ge |a_{n-m+1}| \le |a_{n-m}| \ge |a_{n-m-1}| \ge \dots \ge |a_2| \ge |a_1| \ge |a_0|$ if both n and (n-m) are even or odd, (OR)

$$|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge |a_{n-3}| \le \dots \le |a_{n-m+1}| \ge |a_{n-m}| \ge |a_{n-m-1}| \ge \dots \ge |a_2| \ge |a_1| \ge |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_1}} log \frac{|a_n|(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_1 cos\alpha}{|a_0|}$$

if both n and (n-m) are even or odd

where
$$Y_1 = [(|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+2}| + |a_{n-m}|) - (|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)],$$

(ii) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{|a_n|(\cos \alpha + \sin \alpha + 1) + 2\sin \alpha \sum_{i=0}^{n-1} |a_i| + 2Y_2 \cos \alpha}{|a_0|}$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even

$$where \ Y_2 = [(|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m}| + |a_{n-m+1}|) - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+4}| + |a_{n-m+2}|)].$$

Corollary 2.2. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that $|arg(a_i)| \le \frac{\pi}{2}$ for $i = 1, 2, ..., n, a_0 \ne 0$ and

$$|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge \dots \ge |a_{n-m+1}| \le |a_{n-m}| \ge |a_{n-m-1}| \ge \dots \ge |a_2| \ge |a_1| \ge |a_0|$$

if both n and (n-m) are even or odd, (OR)

$$|a_n| \geq |a_{n-1}| \leq |a_{n-2}| \geq \ldots \leq |a_{n-m+1}| \geq |a_{n-m}| \geq |a_{n-m-1}| \geq \ldots \geq |a_2| \geq |a_1| \geq |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_n| + Y_1}{|a_0|}$$
 if both n and $(n-m)$ are even or odd,

where
$$Y_1 = [(|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+2}| + |a_{n-m}|) - (|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)],$$

$$OR$$

(ii) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_n| + Y_2}{|a_0|},$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even,

where
$$Y_2 = [(|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m}| + |a_{n-m+1}|) - (|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|)].$$

Remark 2.3. By taking $\alpha = \beta = 0$ and $r_1 = \frac{1}{2}$ in Theorem 2.1, it reduces to Corollary 2.2

Theorem 2.4. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that

$$|arg(a_i) - \beta| \le \alpha \le \frac{\pi}{2}, i = 0, 1, 2, ..., n, for some real \beta, a_0 \ne 0 and$$

$$|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le \dots \le |a_{n-m+1}| \ge |a_{n-m}| \ge |a_{n-m-1}| \ge \dots \ge |a_2| \ge |a_1| \ge |a_0|$$

if both n and (n-m) are even or odd,

OR

$$|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le \dots \ge |a_{n-m+1}| \le |a_{n-m}| \ge |a_{n-m-1}| \ge \dots \ge |a_2| \ge |a_1| \ge |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_1}} log \frac{|a_n|(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_3cos\alpha}{|a_0|}$$

if both n and (n-m) are even or odd,

where
$$Y_3 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_n| + |a_{n-2}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|)].$$

OR

(ii) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_i}} \log \frac{|a_n|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_4\cos\alpha}{|a_0|}$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even,

where
$$Y_4 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+2}| + |a_{n-m}|) - (|a_n| + |a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)].$$

Corollary 2.5. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that $|arg(a_i)| \le \frac{\pi}{2}$, for i = 0, 1, 2, ..., n, $a_0 \ne 0$ and

$$|a_n| \leq |a_{n-1}| \geq |a_{n-2}| \leq |a_{n-3}| \geq \ldots \leq |a_{n-m+1}| \geq |a_{n-m}| \geq |a_{n-m-1}| \geq \ldots \geq |a_2| \geq |a_1| \geq |a_0|$$

if both n and (n-m) are even or odd, (OR)

$$|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le |a_{n-3}| \ge \dots \ge |a_{n-m+1}| \le |a_{n-m}| \ge |a_{n-m-1}| \ge \dots \ge |a_2| \ge |a_1| \ge |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even. Then (i) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_n| + Y_3}{|a_0|}$$
 if both n and $(n-m)$ are even or odd,

where
$$Y_3 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_n| + |a_{n-2}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|)],$$

(ii) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_n| + Y_4}{|a_0|},$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

where
$$Y_4 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+2}| + |a_{n-m}|) - (|a_n| + |a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)].$$

Remark 2.6. By taking $\alpha = \beta = 0$ and $r_1 = \frac{1}{2}$ in Theorem 2.4, it reduces to Corollary 2.5.

Theorem 2.7. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that

$$|arg(a_i) - \beta| \le \alpha \le \frac{\pi}{2}, i = 0, 1, 2, ..., n, for some real \beta, a_0 \ne 0 and$$

$$|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge |a_{n-3}| \le \dots \ge |a_{n-m+1}| \le |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$$

if both n and (n-m) are even or odd (OR)

$$|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge |a_{n-3}| \le \dots \le |a_{n-m+1}| \ge |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r}} \log \frac{(|a_n| + |a_0|)(\cos \alpha + \sin \alpha + 1) + 2\sin \alpha \sum_{i=1}^{n-1} |a_i| + 2\lambda_1 \cos \alpha}{|a_0|}$$

if both n and (n-m) are even or odd

$$where \ \lambda_1 = [(|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+2}| + |a_{n-m}|) - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|)],$$

OB

(ii) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{(|a_n| + |a_0|)(\cos \alpha + \sin \alpha + 1) + 2\sin \alpha \sum_{i=1}^{n-1} |a_i| + 2\lambda_2 \cos \alpha}{|a_0|}$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even

$$where \ \lambda_2 = [(|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+2}| + |a_{n-m}|)].$$

Corollary 2.8. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \geq m \geq 2$ with complex coefficients such that $|arg(a_i)| \leq \frac{\pi}{2}$, for i = 0, 1, 2, ..., n, $a_0 \neq 0$ and

$$|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge \dots \ge |a_{n-m+1}| \le |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$$

if both n and (n-m) are even or odd,

OR

$$|a_n| \ge |a_{n-1}| \le |a_{n-2}| \ge \dots \le |a_{n-m+1}| \ge |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_n| + |a_0| + \lambda_1}{|a_0|}$$
 if both n and $(n-m)$ are even or odd,

$$where \ \lambda_1 = [(|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+2}| + |a_{n-m}|) - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|)],$$

OR

(ii) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_n| + |a_0| + \lambda_2}{|a_0|},$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even,

$$where \ \lambda_2 = [(|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+2}| + |a_{n-m}|)].$$

Remark 2.9. By taking $\alpha = \beta = 0$ and $r_1 = \frac{1}{2}$ in Theorem 2.7, it reduces to Corollary 2.8.

Theorem 2.10. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that

$$|arg(a_i) - \beta| \le \alpha \le \frac{\pi}{2}, i = 0, 1, 2, ..., n, for some real \beta, a_0 \ne 0 and$$

 $|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le |a_{n-3}| \ge \dots \le |a_{n-m+1}| \ge |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$ if both n and (n-m) are even or odd,

OR

 $|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le |a_{n-3}| \ge \dots \ge |a_{n-m+1}| \le |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{|a_0|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=1}^n |a_i| + 2\lambda_3 \cos\alpha}{|a_0|},$$

if both n and (n-m) are even or odd,

$$where \ \lambda_3 = [(|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+2}| + |a_{n-m}|)],$$

OR

(ii) the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$, does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{|a_0|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=1}^n |a_i| + 2\lambda_4 \cos\alpha}{|a_0|}$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even,

$$where \ \lambda_4 = [(|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+4}| + |a_{n-m+2}|) - (|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|)].$$

Corollary 2.11. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n \ge m \ge 2$ with complex coefficients such that $|arg(a_i)| \le \frac{\pi}{2}$, for i = 0, 1, 2, ..., n, $a_0 \ne 0$ and

$$|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le |a_{n-3}| \ge \dots \le |a_{n-m+1}| \ge |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$$

if both n and (n-m) are even or odd, (OR)

$$|a_n| \le |a_{n-1}| \ge |a_{n-2}| \le |a_{n-3}| \ge \dots \ge |a_{n-m+1}| \le |a_{n-m}| \le |a_{n-m-1}| \le \dots \le |a_2| \le |a_1| \le |a_0|$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

Then (i) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_0| + \lambda_3}{|a_0|}$$
 if both n and $(n-m)$ are even or odd,

where
$$\lambda_3 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+2}| + |a_{n-m}|)],$$

(OR) (ii) the number of zeros of P(z) in $|z| \leq \frac{1}{2}$, does not exceed

$$1 + \frac{1}{\log 2} \log \frac{|a_0| + \lambda_4}{|a_0|},$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even,

where
$$\lambda_4 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|) - (|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)].$$

Remark 2.12. By taking $\alpha = \beta = 0$ and $r_1 = \frac{1}{2}$ in Theorem 2.10, it reduces to Corollary 2.11.

We need the following lemmas for proof of the Theorems.

3. Lemmas

Lemma 3.1. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n with complex coefficients such that

$$|arg(a_i) - \beta| \le \alpha \le \frac{\pi}{2}; \ |a_{i-1}| \le |a_i| \ for \ some \ i = 0, 1, 2, ..., n.$$

Then
$$|a_i - a_{i-1}| \le (|a_i| - |a_{i-1}|)\cos\alpha + (|a_i| + |a_{i-1}|)\sin\alpha$$
.

The above lemma is due to Govil [4].

Lemma 3.2. [1]: If f(z) is regular $f(0) \neq 0$ and $|f(z)| \leq M$ (M>0) in $|z| \leq 1$ then the number of zeros of f(z) in $|z| \leq r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{M}{|f(0)|}.$$

4. Proof of the Theorems

Proof of Theorem 2.1

$$\begin{aligned} & Let \ P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 \ be \ a \ polynomial \ of \ degree \ n \geq 2. \\ & Then \ consider \ the \ polynomial \ Q(z) = (1-z)P(z) \ so \ that \\ & Q(z) = -a_n z^{n+1} + (a_n - a_{n-1})z^n + \ldots + (a_1 - a_0)z + a_0. \\ & Then \ for \ |z| > 1, \ we \ have \\ & |Q(z)| \leq |a_n| + \sum_{i=1}^n |a_i - a_{i-1}| + |a_0| \\ & = |a_n| + |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + \ldots + |a_{n-m+1} - a_{n-m}| + \sum_{i=1}^{n-m} |a_i - a_{i-1}| \\ & \leq |a_n| + (|a_n| - |a_{n-1}|) cos\alpha + (|a_n| + |a_{n-1}|) sin\alpha + (|a_{n-2}| - |a_{n-1}|) cos\alpha \\ & + (|a_{n-2}| + |a_{n-1}|) sin\alpha + (|a_{n-2}| - |a_{n-3}|) cos\alpha + (|a_{n-2}| + |a_{n-3}|) sin\alpha \\ & + \ldots + (|a_{n-m+2}| - |a_{n-m+1}|) cos\alpha + (|a_{n-m+2}| + |a_{n-m+1}|) sin\alpha + \ldots + \sum_{i=1}^{n-m} (|a_i| - |a_{i-1}|) cos\alpha \\ & + \sum_{i=1}^{n-m} (|a_i| + |a_{i-1}|) sin\alpha + |a_0| \ if \ both \ n \ and \ (n-m) \ are \ even \ or \ odd \ (\ by \ Lemma \ 3.1 \) \\ & = |a_n| (cos\alpha + sin\alpha + 1) + 2 sin\alpha \sum_{i=0}^{n-1} |a_i| + 2 Y_1 cos\alpha - |a_0| (cos\alpha + sin\alpha - 1) \\ & \leq |a_n| (cos\alpha + sin\alpha + 1) + 2 sin\alpha \sum_{i=0}^{n-1} |a_i| + 2 Y_1 cos\alpha. \\ & where \ Y_1 = (|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+2}| + |a_{n-m}|) \\ & - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|)]. \end{aligned}$$

By applying Lemma 3.2 to Q(z), we get that the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_1}} log \frac{|a_n|(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_1 cos\alpha}{|a_0|}$$

if both n and (n-m) are even or odd

where
$$Y_1 = [(|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+2}| + |a_{n-m}|) - (|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)]$$

Since the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$ is equal to the number of zeros of Q(z) in $|z| \le r_1$, if both n and (n-m) are even or odd, we get the required result.

Similarly we can prove that if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, by re-arranging the terms in the above proof.

That is the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_i}} \log \frac{|a_n|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_2\cos\alpha}{|a_0|}$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even,

where
$$Y_2 = [(|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|)]$$
.

This completes the proof of Theorem 2.1

Proof of Theorem 2.4

$$Let \ P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 \ be \ a \ polynomial \ of \ degree \ n \geq 2.$$

$$Then \ consider \ the \ polynomial \ Q(z) = (1-z)P(z) \ so \ that$$

$$Q(z) = -a_n z^{n+1} + (a_n - a_{n-1})z^n + \dots + (a_1 - a_0)z + a_0.$$

$$Then \ for \ |z| > 1, \ we \ have$$

$$|Q(z)| \leq |a_n| + \sum_{i=1}^n |a_i - a_{i-1}| + |a_0|$$

$$= |a_n| + |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + |a_{n-2} - a_{n-3}| + \dots + |a_{n-m+1} - a_{n-m}|$$

$$+ \sum_{i=1}^{n-m} |a_i - a_{i-1}|$$

$$\leq |a_n| + (|a_{n-1}| - |a_n|)cos\alpha + (|a_{n-1}| + |a_n|)sin\alpha + (|a_{n-1}| - |a_{n-2}|)cos\alpha$$

$$+ (|a_{n-1}| + |a_{n-2}|)sin\alpha + (|a_{n-3}| - |a_{n-2}|)cos\alpha + (|a_{n-3}| + |a_{n-2}|)sin\alpha$$

$$+ \dots + (|a_{n-m+1}| - |a_{n-m+2}|)cos\alpha + (|a_{n-m+1}| + |a_{n-m+2}|)sin\alpha$$

$$+ (|a_{n-m+1}| - |a_{n-m}|)cos\alpha + (|a_{n-m+1}| + |a_{n-m}|)sin\alpha + \dots + \sum_{i=1}^{n-m} (|a_i| - |a_{i-1}|)cos\alpha$$

$$+ \sum_{i=1}^{n-m} (|a_i| + |a_{i-1}|)sin\alpha + |a_0|$$

$$if \ both \ n \ and \ (n-m) \ are \ even \ or \ odd \ (\ by \ Lemma \ 3.1)$$

$$= |a_n|(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_3cos\alpha - |a_0|(cos\alpha + sin\alpha - 1)$$

$$\leq |a_n|(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_3cos\alpha,$$

$$where \ Y_3 = [(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|)$$

By applying Lemma 3.2 to Q(z), we get that the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{|a_n|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_3\cos\alpha}{|a_0|}.$$

if both n and (n-m) are even or odd, where

$$Y_3 = \left[(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_n| + |a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|) \right]$$

Since the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$ is equal to the number of zeros of Q(z) in $|z| \le r_1$, if both n and (n-m) are even or odd, we get the required result.

Similarly we can prove that if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, by re-arranging the terms in the above proof.

That is the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

 $-(|a_n|+|a_{n-2}|+|a_{n-4}|+...+|a_{n-m+4}|+|a_{n-m+2}|)$

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{|a_n|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=0}^{n-1} |a_i| + 2Y_4 \cos\alpha}{|a_0|}.$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, where

$$Y_4 = \left[(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+2}| + |a_{n-m}|) - (|a_n| + |a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) \right]$$

This completes the proof of Theorem 2.4.

Proof of Theorem 2.7

Let
$$P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$$
 be a polynomial of degree $n \ge 2$.
Then consider the polynomial $Q(z) = (1-z)P(z)$ so that
$$Q(z) = -a_n z^{n+1} + (a_n - a_{n-1})z^n + ... + (a_1 - a_0)z + a_0.$$
Then for $|z| > 1$, we have

$$|Q(z)| \le |a_n| + \sum_{i=1}^n |a_i - a_{i-1}| + |a_0|$$

$$= |a_n| + |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + |a_{n-2} - a_{n-3}| + \dots + |a_{n-m+1} - a_{n-m}|$$

$$+ \sum_{i=1}^{n-m} |a_i - a_{i-1}|$$

$$\leq |a_{n}| + (|a_{n}| - |a_{n-1}|)cos\alpha + (|a_{n}| + |a_{n-1}|)sin\alpha + (|a_{n-2}| - |a_{n-1}|)cos\alpha + (|a_{n-2}| + |a_{n-1}|)sin\alpha + (|a_{n-2}| - |a_{n-3}|)cos\alpha + (|a_{n-2}| + |a_{n-3}|)sin\alpha + ... + (|a_{n-m+2}| - |a_{n-m+1}|)cos\alpha + (|a_{n-m+2}| + |a_{n-m+1}|)sin\alpha + (|a_{n-m}| - |a_{n-m+1}|)cos\alpha + (|a_{n-m}| + |a_{n-m+1}|)sin\alpha + ... + \sum_{i=1}^{n-m} (|a_{i-1}| - |a_{i}|)cos\alpha + \sum_{i=1}^{n-m} (|a_{i-1}| + |a_{i}|)sin\alpha + |a_{0}|$$

if both n and (n-m) are even or odd (by Lemma 3.1)

$$=(|a_n|+|a_0|)(\cos\alpha+\sin\alpha+1)+2\sin\alpha\sum_{i=1}^{n-1}|a_i|+2\lambda_1\cos\alpha$$
 where $\lambda_1=[(|a_{n-2}|+|a_{n-4}|+...+|a_{n-m+2}|+|a_{n-m}|)$
$$-(|a_{n-1}|+|a_{n-3}|+...+|a_{n-m+3}|+|a_{n-m+1}|)]$$

By applying Lemma 3.2 to Q(z), we get that the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_1}} log \frac{(|a_n| + |a_0|)(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=1}^{n-1} |a_i| + 2\lambda_1 cos\alpha}{|a_0|}.$$

if both n and (n-m) are even or odd, where

$$\lambda_1 = \left[(|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+2}| + |a_{n-m}|) - (|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|) \right].$$

Since the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$ is equal to the number of zeros of Q(z) in $|z| \le r_1$, if both n and (n-m) are even or odd, we get the required result.

Similarly we can prove that if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, by re-arranging the terms in the above proof.

That is the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_1}} log \frac{(|a_n| + |a_0|)(cos\alpha + sin\alpha + 1) + 2sin\alpha \sum_{i=1}^{n-1} |a_i| + 2\lambda_2 cos\alpha}{|a_0|}.$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, where

$$\lambda_2 = \left[(|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+2}| + |a_{n-m}|) \right].$$

This completes the proof of Theorem 2.7.

Proof of Theorem 2.10

Let
$$P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$$
 be a polynomial of degree $n \ge 2$.
Then consider the polynomial $Q(z) = (1-z)P(z)$ so that $Q(z) = -a_n z^{n+1} + (a_n - a_{n-1})z^n + ... + (a_1 - a_0)z + a_0$.
Then for $|z| > 1$, we have
$$|Q(z)| \le |a_n| + \sum_{i=1}^n |a_i - a_{i-1}| + |a_0|$$

$$= |a_n| + |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + |a_{n-2} - a_{n-3}| + ... + |a_{n-m+1} - a_{n-m}|$$

$$+ \sum_{i=1}^{n-m} |a_i - a_{i-1}|$$

$$\le |a_n| + (|a_{n-1}| - |a_n|) \cos\alpha + (|a_{n-1}| + |a_n|) \sin\alpha + (|a_{n-1}| - |a_{n-2}|) \cos\alpha$$

$$+ (|a_{n-1}| + |a_{n-2}|) \sin\alpha + (|a_{n-3}| - |a_{n-2}|) \cos\alpha + (|a_{n-3}| + |a_{n-2}|) \sin\alpha$$

$$+ ... + (|a_{n-m+1}| - |a_{n-m+2}|) \cos\alpha + (|a_{n-m+1}| + |a_{n-m+2}|) \sin\alpha$$

$$+ (|a_{n-m+1}| - |a_{n-m}|) \cos\alpha + (|a_{n-m+1}| + |a_{n-m}|) \sin\alpha$$

$$+ ... + \sum_{i=1}^{n-m} (|a_{i-1}| - |a_i|) \cos\alpha + \sum_{i=1}^{n-m} (|a_{i-1}| + |a_i|) \sin\alpha + |a_0|$$
if both n and n and n are even or odd (by Lemma 3.1)
$$= |a_0|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=1}^{n} |a_i| + 2\lambda_3 \cos\alpha - |a_n|(\cos\alpha + \sin\alpha - 1)$$

$$\le |a_0|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=1}^{n} |a_i| + 2\lambda_3 \cos\alpha$$
where $\lambda_3 = [(|a_{n-1}| + |a_{n-3}| + ... + |a_{n-m+3}| + |a_{n-m+1}|)$

By applying Lemma 3.2 to Q(z), we get that the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

 $-(|a_{n-2}|+|a_{n-4}|+...+|a_{n-m+4}|+|a_{n-m+2}|+|a_{n-m}|)].$

$$\frac{1}{\log \frac{1}{r_i}} \log \frac{|a_0|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=1}^n |a_i| + 2\lambda_3 \cos\alpha}{|a_0|}.$$

if both n and (n-m) are even or odd, where

$$\lambda_3 = \left[(|a_{n-1}| + |a_{n-3}| + \ldots + |a_{n-m+3}| + |a_{n-m+1}|) - (|a_{n-2}| + |a_{n-4}| + \ldots + |a_{n-m+4}| + |a_{n-m+2}| + |a_{n-m}|) \right].$$

Since the number of zeros of P(z) in $|z| \le r_1$, $0 < r_1 < 1$ is equal to the number of zeros of Q(z) in $|z| \le r_1$, if both n and (n-m) are even or odd, we get the required result.

Similarly we can prove that if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, by re-arranging the terms in the above proof.

That is the number of zeros of Q(z) in $|z| \le r_1$, $0 < r_1 < 1$ does not exceed

$$\frac{1}{\log \frac{1}{r_1}} \log \frac{|a_0|(\cos\alpha + \sin\alpha + 1) + 2\sin\alpha \sum_{i=1}^n |a_i| + 2\lambda_4 \cos\alpha}{|a_0|}.$$

if n is even and (n-m) is odd (or) if n is odd and (n-m) is even, where

$$\lambda_4 = \left[(|a_{n-1}| + |a_{n-3}| + \dots + |a_{n-m+4}| + |a_{n-m+2}|) - (|a_{n-2}| + |a_{n-4}| + \dots + |a_{n-m+3}| + |a_{n-m+1}|) \right].$$

This completes the proof of Theorem 2.10.

References

- [1] K. K. Dewan, Extremal Properties and Coefficient Estimates for Polynomials with Restricted Zeros and on Location of Zeros of Polynomials, Ph.D Thesis, Indian Institutes of Technology, Delhi, 1980
- [2] G.Eneström, Remarquee sur un théorème relatif aux racines de l'equation $a_n + ... + a_0 = 0$ où tous les coefficient sont et positifs, Tôhoku Math.J 18 (1920), 34-36.
- [3] G.L.Reddy ,P.Ramulu, On The Zeros of Polynomials, Int Jr. of Mathematical Sciences and Applications, 5(2), (2015), 395-399.
- [4] N.K.Govil and Q.I.Rehman, On the EnstromKakeya Theorem Tohoku Math J. 20, (1968), 126-136.
- [5] S.Kakeya, On the limits of the roots of an alegebraic equation with positive coefficient, Tôhoku Math.J, (2), (1912-1913), 140-142.
- [6] Q.G.Mohammad, On the Zeros of the Polynomials, American Mathematical Monthly, 72(6), (1965), 631-633.
- [7] P.Ramulu, G.L. Reddy, and C.Gangadhar, Location of Zeros of Analytic Functions, American Journal of Engineering Research, 4(7), (2015), 83-87.
- [8] P.Ramulu, G.L. Reddy, and C.Gangadhar, On the Zeros of Polynomials with Real Coefficients, International Journal of Applied Mathematical Sciences, 5(2),(2015), 109-118.
- [9] P.Ramulu, G.L. Reddy, and C.Gangadhar, Zeros of Polynomials with Restricted Coefficients, IOSR Journal of Mathematics, 11(2), Ver. V, (2015), 21-28.
- [10] P.Ramulu, G.L.Reddy, Location of zeros of Polynomials with with Restricted Real Coefficients, International J. of Math. Sci. and Engg. Appls., 9(II), (2015), 1-12.
- [11] P.Ramulu, G.L.Reddy, On The Enestrom-Kakeya Theorem, International Journal of Pure and Applied Mathematics, 102(4), (2015), 687-700.
- [12] P.Ramulu, Some Generalization of Eneström-Kakeya Theorem, International Journal of Mathematics and Statistics Invention, 3(2),(2015), 52-59.